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ABSTRACT

This paper presents a computational study of the
problem of finding the optimal temperature profile for
a chemical reactor. Fixed-step gradient, steepest ascent
and conjugate gradient methods are compared and the
relative merits of various numerical integration techni-
ques discussed.

Finally the control function is represented by a
number of parametric forms and the problem tackled
directly by hill-climbing.

I INTRODUCTION
A major difficulty arising in problems of system
optimisation is the choice of a suitable technique to
be used for solution. Present experience indicates
that no single optimisation technique is superior to
all others in the solution of even a few types of prob-

lem and that the choice of method depends on

many factors, including the characteristics of the
. problem and, not least, the computing facilities
available.

Among many techniques proposed, probably the
two most successfully applied in recent years have
been dynamic programming developed by Bellman'
and the maximum principle derived by Pontryagin
and his associates.” Computationally the former is
more complex and requires a substantial amount of
programming and computer storage, whereas the
latter suffers from the inherent difficulties of a two-
point boundary-value problem. Of the methods
available to solve the boundary-value problem the
application of gradient techniques leads to direct

methods in the form of particularly simple algorithms

# The paper is based on work submitted by this author for the
degree of M.Sc. at Loughborough University of Technology.
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with light demands on computer storage. Computa-
tional experience using fixed-step gradient techni-
ques® * 5 6 7. & 9 has shown that this method is

effective although the rate of convergence slows as the

optimum configuration is approached.

Recently, problems of system optimisation have
been tackled using a conjugate gradient techni-
que!® 1 #+12% which has been shown to have improved
convergence properties, although the numerical
examples used were generally of simple type. Overall,
the amount of computational experience yet available
using Pontryagin’s technique in these ways on realis-
tic problems is not substantial.

In this paper the fairly complex problem of
determining the temperature profile in a chemical
reactor to give optimum yield is used to compare
the computational merits of the maximum principle
in conjunction with fixed-step gradient, steepest
ascent and conjugate gradient techniques. To provide
further comparison the temperature profile is para-
meterised and the problem solved using a suitable
hill-climbing technique: several forms for the control
are assumed in this relatively little used method.

II PROBLEM FORMULATION AND
' METHODS OF SOLUTION

(A) The general problem
The process to be controlled is described by a set
of non-linear differential equations of the form -

dx
T x = f(x, u) )
to St< 1ty
x(tp) =a ()]

¢ We are grateful to a referee for the following additional
references; IFAC Congress, Warsaw, 1969, Papers 18.4, 25.2,
25.3, 254 and 39.3.
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where x(t) is an n-dimensional vector of state variables
whose initial values a are given at time ¢y, and u is an
m-dimensional vector of control variables.

A particular optimisation problem related to such
a process might be one of finding a piecewise con-
tinuous control vector u(t), subject to the constraints

Gu=<0 i=12..,m 3

which makes some objective function of the final
values of the state variables, for example:

F= z uexdty)

i=1

M, constant 4

a maximum or minimum having regard to the differ-
ential constraints and initial conditions in the state
variables given in eqns. (1) and (2). ¢, here is the final
time.

(B) Methods of solution

The procedure using Pontryagin’s maximum
principle is to introduce an n-dimensional vector
p(t) of adjoint variables satisfying the adjoint
differential equations

b= —ZP; ax,

J=l

i=12..,n ©)
where

oF
pty) = m = (6)

(when Fis as speciﬁed earlier).
Also introduced is the Hamiltonian function H
defined by the expression

Hexw =Y aftew ()

i=1

If the control vector u is subject to constraint, then
according to Pontryagin the set of necessary con-
ditions for a maximum (minimum) of the objective
function F are the state and adjoint egns, (1, 2) and
(5, 6) together with the requirement

fax [H = g;mf:} ®

This last condition means that u must be chosen
to maximise (minimise) H either directly from the
equation

oH

EJ‘—O i=L2..,m 9)

if w-is within the region R of admissible control, or
by inspection of its values on the boundaries of R,

In either case the u selected is that which determines
the greatest (least) H.

In order to determine the optimal solution to the
system by this method a two-point boundary value
problem is encountered since the boundary con-
ditions on the adjoint variables p are known at the
end of the time interval in eqn. (6) while those for
the state variables are known at the start (eqn. (2)).
The major numerical difficulty in the subsequent
solution arises here due to the instability of one or
the other of the sets of state or adjoint differential
equations when integrated in the required direction.

This is avoided by using gradient techniques which
allow the integration of both sets in their respective
stable directions of increasing time. This modified
approach does not attempt to satisfy the coupling
eqn. (9) or its equivalent directly but proceeds
by solving a sequence of non-optimal problems with
the property that each successive solution leads to an
improved value of the objective function. More
specifically, the technique performs iterations on the
control function which is initially selected arbitrarily
so that the condition for optimality is not satisfied.

For this type of method a direct search is made for
the extreme value of the objective function. The
computational scheme involving three types of
gradient technique is described below.

(C) Algorithm for madtﬁed ‘methods

In this scheme!? a single control function u(¢) is
assumed (m = 1); the algorithm is easily extended to
the multicontrol case.

An arbitrary starting confrol # = u, is selected,
then,

f oH
8o = {au }""“o = g(uo) (10)
and
Jo = —&o (¢9))

is the first direction for search. These equations hold
at each time step and the discretisation involved is
discussed (for a specific problem) in Section IIL

~ In this, and subsequent directions &, a step s, is
taken. The value of &, may be

(i) fixed in value
or (ii) chosen to minimise F(u, + 8.5).
The (k + I)th approximation to the optimal control
is then formed from

Ups 1 = Uy + 85y (12)
So that

Giv1 = 8(Uxs1) (13)
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with the next search direction from

) See1 = —8ksy + Bisi (14)

where

&+ 15 Bis 1)
= 15
. (8 £0) &
and
G0 8) = | ae 0 dr. (16)
to

The search directions s, ; computed via the gradient
norms f, constitute conjugate directions and repre-
sent the basis of a conjugate gradient method.
Setting B, = 0 recovers the method of steepest
descent from the algorithm. Both techniques utilise
steps &, as defined in (ii) of the stepping procedure
whereas choice of &, as in (i) realises the fixed-step
gradient scheme.

In the conjugate gradient/steepest descent tech-

“niques the choice of suitable linear search routine is

an integral and important part of the overall com-
putational scheme. In the fixed-step gradient
approach choice of step-size is critical with respect to
computing time. These points are discussed with the
computational considerations of section IIIB.

(D) Parameterisation of control

The procedures necessary to deal with the two-
point boundary value problem may also be avoided
if, for example, sufficient knowledge is available
concerning the form of the control variable. In
particular, if the control can be represented by a
suitable function then the performance index will in
turn depend on the parameters involved in this
function. The position then becomes one of optimisa-
tion of the performance index with respect to the
parameters and may be tackled by a hill-climbing
method.

An obvious drawback is the problem of providing
a suitable form for the control—quite apart from the
probable greater computation required especially
when the number of parameters involved is large.

For the problem considered in Section III (Optimal
temperature profile in a chemical reactor) the nature
of the reaction scheme is such that a falling tem-
perature profile from inlet to outlet would be expected
for optimum yield; there will also be an optimal final
or contact time.3

One significant feature of this method is the
convenient manner in which variable final time may
be considered by simply creating an additional
parameter which is adjusted, with the other para-
meters involved, by the optimising routine.-Several
forms for the temperature profile were assumed (a

selection of which are described in Appendix I) and
the variable final time facility was incorporated in
two of these.

The optimising routine used was that due to
Rosenbrock, which allows for constraints on the
parameters involved—a necessary facility for the
problem considered since, from physical considera~
tions, the temperatures along the reactor were con-
strained to be <550°C at all times. The Rosenbrock
scheme is described fully in Refs. 3 or 13.

IIl IMPLEMENTATION OF THE
ALGORITHM

(4) Numerical example

The specific problem considered here was first
investigated computationally by Rosenbrock and
Storey.® Their work suggested the promising nature
of the fixed-step gradient scheme and this is investi-
gated further with, in addition, acomparison with the
stecpest ascent and conjugate gradient techniques
and the method using parameterised control.

The reaction scheme is shown below

Ak B g KD
K2 K
D D

and is assumed to take place in a tubular reactor
under plug flow conditions.

The concentrations of the feed material 4, the
required yield C and intermediate product B are
denoted by x;, x; and x, respectively; D is a waste
product. With this notation, eqns. (1) and (2),
which are the kinetic equations for this system
become

Xy = —(k; + ky + k3)x,
xz = kxxl e k4x3
x.a = k4x2 = ksX3
with initial conditions at time f = 0,
X =1,

x2=0, x3=0

The kinetic rate constants k,i=1,2,...,5in these



NUMERICAL SOLUTION OF AN OPTIMAL TEMPERATURE PROBLEM 123

equations are exponentially dependent on tempera-
ture and hence on time.

In this form, the problem is one of estimating a
temperature profile 7(¢) along the length of the
reactor so as to provide maximum yield x; at final
time ¢,. From practical considerations of catalyst
stability, the temperatures are constrained <550°C.

The set of adjoint differential eqns. (5) and (6) for
this example are

p1=(ky + %k + k3)py — kyp;
P2 = ka(p2 — P3)
D3 =ksps (19)
with end conditions
pity) =0, palty) =0, pa(t) =1 (20)

From these, and the kinetic equations, the gradient
trajectory g of eqn. (13) is

...,:,‘._.3‘

oH 1 =

g=—=—3{—(kE; + k3E; + k3E3)xyp,

+ b Expy — kyEsxy(p; — P3)
— ksEsxs3ps} (21)

In the particular case of fixed-step gradient, g, has a
fixed value, say s, and eqn. (12) of Section IIC
becomes

o0H,

Tk+1 = Tk + 60—

aT, @)

where the step is taken in the direction of the positive
gradient.

For the steepest ascent and conjugate gradient -

schemes the step g, chosen at each new direction of
search s, is that which maximises x3(T)

. ( 0H,)
i.e. X3 \Tk + - aTk‘

The fundamental idea involved is that T;, x and p
and hence dH/OT are all specified at the time pre-
vious to when T}, is required and thus the com-
putation of the optimal temperature profile does not
involve ‘the solution of the necessary coupling
eqn. (9) or its equivalent. Whenever the value of T’
at any point along the reactor, as computed from
eqn. (22), exceeds 550°C it is set at that value. (In the
case of conjugate gradient schemes this can, of
course, destroy the conjugacy property.)

(B) Computational considerations

Several factors having considerable influence on the
efficiency of the computational solution of the prob-
lem discussed in IIIA were considered and are

23)

discussed briefly here. (It is worth noting at this
stage that had our only intercst been in the solution
of this particular problem, and not in comparison of
the various techniques, the special nature of the state
and adjoint equations could have been used to
simplify computation.)

(i) Integration routine

The state and adjoint differential equations
required a numerical method of solution, and
of course the efficient solution of this part of the
problem (performed many times) was highly
important, The main factors influencing the
choice of technique included accuracy, the
absence of strongly unstable characteristics and
_ reasonable simplicity leading to speed of com-
putation. Three mecthods were used—trape-
zoidal, Runge-Kutta and a predictor-corrector
scheme due to Hamming—all of which per-
formed favourably. However, the Runge-Kutta
fourth order method had the best overall
qualities and in the problem considered reliable
results were obtainable at a fairly coarse
integration interval—thus saving computer time;
typically, computation using this method was
possible with an integration step some four
times the size of that using the trapezoidal
scheme to obtain similar accuracy. The method
required no special starting procedure, it
involved light demands on storage, and was
ideally suited for automatic computation since a
straightforward procedure was repeated several
times. No problems of instability were
encountered. (For details of acual step sizes,

termination procedures, etc., see Ref. 18.)

(it) Linear search

" In the application of the steepest ascent and
conjugate gradient techniques, the problem of
maximising a function along a one-dimensional
curve must be solved several times during the
solution of the main problem. This linear search
can, therefore, occupy a large proportion of the
total time for the solution of the problem and
should obviously be as efficient as possible.
Some suitable balance should however be struck
between the accuracy and required computation
for a given scheme; the gain in accuracy implied
by fitting a high order polynomial may be out-
weighed by excessive computation time duc to
complexity of form.

One scheme used in Ref. 10 is that proposed
by Davidon and described by Fletcher and
Powell.** This scheme involves a cubic fit but
requires estimates of the first derivatives of the
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function which were not available for the
problem described in IITA.

A common practice is the use of a quadratic
fit to the function, and two variations of this
idea were used here. In the first, the step was
kept constant and when a reduction in the
objective function was achieved the quadratic
fit was taken through the last three points and
the maximum located analytically. In the second
method the technique adopted was one of
starting with a nominally small step and doubling
until a reduction in the objective function was
achieved. At this stage a half-step back was
taken and the maximum ‘boxed in’ with the
three points much closer together. This method is
as described by Swann'® and increases the
accuracy of the interpolation without increasing
the number of function evaluations required.
A disadvantage found was that the steps could
become very large.

(i) Choice of step size and starting configuration
The considerations involved here are discussed
in some detail by Metriam®® for example. For
satisfactory behaviour of the gradient processes
the step should be small enough to substantiate
neglect of all but first order terms in the theory.
However, with a small step there can be an
intolerably slow rate of convergence which can
seriously limit the efficiency of the method.
Therefore, some compromise is seen to be
necessary to satisfy both the condition that the
objective function should show improvement
and also that this improvement should be
sustained at a substantial rate. It would appear
that this compromise must be effected separately
for each individual problem tackled by these
methods. For the numerical problem considered
in Section I the behaviour of the various
methods under a comprehensive range of fixed-
step sizes (starting step sizes when considering
the step-doubling search technique) was noted.
Although this procedure can be wasteful of
computer time, experience from early results
indicated trends which enabled certain definite
reductions to be made in the later computations
for all the methods considered. (See Ref. 18.)
For each method, using such a predetermined
efficient step size, results were obtained from
several different starting configurations including
those remote from the apparent optimum. This
not only served to give a check dn the reliability
of the optimum result but also tested the versa-
tility of each method with regard to overall
reliability of performance, -

IV RESULTS AND DISCUSSION

(A) Solution of the problem

Consistent solutions to the numerical example
were obtained by each of the four methods used.
Typically, a yield of 433 % was achieved at a contact
time of 1sec and an associated temperature profile
constrained at 550°C « ome 12-13% of the
reactor’s lengih at the inlet «..« falling to 350° at the
outlet. Typical growth of yield and temperature is

550
50058 ..« %
3 i~ o
’ T~ st iteration
'50 b —.
. —
5 s
& N~ Starting
cg; 00 \\ «——. ‘profile
e L 3rd_itergtion
==~ =I0th iteration
350F = = 4
20(and 50) iterations
0] 20 40 60 80 100

Reactor iength (%)
Fig. 1. Progressive changes in temperature profile.

shown in Figs. 1 and 2. Increases of the order of 1%
in yield were obtained by substantial increase in
contact time and associated changes in temperature
profile—whether such increases would be worth-
while in practice would depend on many factors.
Among the results were those which were the best
achievable consistent with restrictions implied by the
method used. In particular (see next section) the

0.5
f 10,20 {(ond 50) iterations
oal = i '-\\;?;Eiternﬁon
Ist iteration
0.3 (
%< ~—————Start, isothermal

0.2 profile (400°C)

Qif

20 40 60 80 100
Reactor length (%)
Fig. 2. Progressive growth of yield,

O

@
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method of parametric representation of the tempera-
ture profile gave best temperature profiles of given
assumed form (e.g. linear) and the yields associated
with these.

(B)

Performance of the methods

(i) Gradient method

Yield Xj (t,)

The method was relatively easy to program
and reguired the least storage compared with
The oLasr gTROiemt techo e T2z hes mield
Liimg i mEocd WS OO zocly $3-47) azd
the assecizted emperature prodle is shown in
tig. 1. In attaining this yield the proportion of
tulct temperatures under constraint was critical.
The characteristics of the problem solved by this
method made increases in search step-sizes
tolerable with associated reductions in comput-
ing time (sec Fig. 3). With large steps the same

044 { €=15000 €25000

€=1000
042
¢=250
040
0.38
036
0 20 40 60 80 I00
Iterations

Fig. 3. Effect of e on yield.

yield and profile were recoverable in as few as
ten iterations, and under these extreme con-
ditions the method produced the fastest solution
of all. Predictably, for this problem, the method
was not a good one when used from starting
conditions remote from the optimum, nor was it
convenient to incorporate variable contact
time although interesting trends were established
by varying this quantity separately.

(i) Steepest ascent

This involved substantially more programming
mainly because of the linear search technique
required. Two types of linear search were used,
one at constant step throughout, the other using
step-doubling from a nominal starting value,
although both used a quadratic fit to the local
maximum. The search with step-doubling was
faster for the problem considered here.

Results using the gradient method were con-
firmed, not only from identical starting con-
ditions, but also from a wide range of other
starting configurations, including those remote
from the optimum—the steepest ascent tech-
nique was particularly versatile in this respect
(see Table 1).

TasLE |

FPERFORMANCE OT STTEPEST ARIENT WETE 20
FROM DIFFERENT STARTING FROFILES L ‘\G

A LINEAR SEARCH WITH STEP-DOUBLING

Starting
Temperature “Yield  Yield

Final Aun}ber Final Number

of
Yield Steps

Starting
Steps

10 0 0-437 77 0438 82
100 0 0437 53 0-438 65
200 000t 0-437 52 0438 76
300 0-054 0437 47 0-438 70
400 0-357 0-437 34 0-438 60
500 0-331 0-437 47 0-438 78

Again, as in the case of the fixed-step gradient
method, a considerable reduction in computing
time was achieved by increase of step size in both
types of linear search, although this reduction
was greater when the linear search with step-
doubling was being used. The computing time
to the optimum configuration using either of the
linear searches was less than in the fixed step
gradient method under almost all conditions
considered. A typical comparison under fixed-
step conditions for a 400°C isothermal starting
profile is given in Table 2.

_TABLE 2
ITERATIONS TO 0437 YIELD; 400°C ISOTHERMAL
STARTING PROPILE
Time per ’ ” ’
Iteration (sec) 24 20 21
#(x 10-3) Gradient  Stecpest Cc';’,"'{d”i&'e‘,‘{f
25 76 77
50 38 39 27
100 19 22

(iii) Conjugate gradient

A further numerical technique was necessary
here to estimate the norm of each gradient
trajectory. Both Simpson’s rule and a high
accuracy Newton-Cotes formula were used, the
former being generally sufficiently accurate
provided an appropriate integration step was
used. (For full details see Ref, 18.)

The additional programming required over
that for the method of steepest ascent was small
and there was a corresponding increase in
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Yield

computing time per iteration and computer
storage requirement.

The method worked well in conjunction with
the linear search at constant step so long as a
relatively small step was used; results at this
stage were produced more quickly than any
other method under comparable conditions.
This is illustrated in Fig. 4 and Table 2. With

0.44¢

043¢

042+

04it /

[
040t ;’f

x Gradient method
o Steepest ascent
o Conjugate gradient

x w——%{ Linear searches
7( w~-3 (constant step)
e 8 16 24 32 40

Number of steps

Fig. 4. Progress to final yield (Isothermal starting profile
400°C).

longer search steps and also when using the
search with step-doubling from a nominal
starting size the method brought a greater
proportion of the temperatures at the reactor
inlet under constraint early in the computa-

tions with correspondingly lower yield; re- .

covery from this state was generally not
possible and at best extremely slow (see Table 3

TABLE 3
PERFORMANCE OF CONJUGATE GRADIENT

METHOD FROM DIFFERENT STARTING PROFILES
USING A LINEAR SEARCH WITH STEP-DOUBLING

Starting . Yield after
Temperature S%;sg

°C 25 steps 50 steps 100 steps
100 0 0-005 0:373 0373
200 0-001 0-408 0-410* —

300 0054 0-437 0437 0-437
400 0357 0-423 0432 ' 0432
500 0-331 0-430 0433 0-435

¢ Constraint not reached.

compared with Table 1). This again emphasises
the delicate relationship between the propottion
of inlet region under constraint and the yield,
in the optimum state. A factor detracting rather
from the overall petformance of this method

Temperature °C

T.J. WALDER AND C. STOREY

was the rather approximate nature of the
method for determining directions of search
except when in the vicinity of the optimum.
Away from this vicinity, directions generated
‘were often inferior to those of steepest ascent
and, at positions remote from the optimum,
perhaps not even directions of ascent. Starting
from these latter regions the method was often
quite unworkable (again see Table 3)—this
diminished effectiveness is perhaps the penalty
to be paid for the computational simplicity. Any
more accurate determination of directions in
this method would appear to result in very
substantial increases in complexity and computa-
tion,*1+12 particularly when adapted to complex
problems. (Poor directions can also arise through
the imposition of constraints.)

(iv) Non-gradient method

In this method, with parameterised tempera-
ture profile, the optimum configuration was
approached by direct search. Computation under
various conditions confirmed that computer time
was greater than that required in the implementa-
tion of Pontryagin’s maximum principle in
conjunction with the several gradient tech-
niques.

Several distinct assumptions as to the form
to be taken by the temperature profile led to
different final temperature profiles with associ-
ated differing yields lower in value than those
achieved by the other methods—see, for

_example, Figs. 5 and 6. However, previous

consistent results were again confirmed when
other initial assumptions as to the profile form,

Linear form
/ (Yield 43.1%)
N

300} S
Exponen’riol—lineur/ N
comblination

ool  (Yield 43.3%)

0 20 40 60 80 100

Distance along reactor (%)

Fig. 5. Comparison of final ptofiles (400°C isothermal

starting profile),
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for example the discrete temperature profile,
gave a final temperature profile and reactor yield
approximating to those realised by the various
gradient techniques (see Fig. 7).

The method worked reasonably well from
several different starting profiles but some
difficulty was experienced starting from profiles

500+

/250 iterations

400 Starting
\profile
450
[ 500
lYi‘eld 4.5)

(o} 20 40 60 80 100
Distance along reactor (%)

Temperature °C

Fig. 6. Progressive changes in profile—three straight line
assumption.

remote from the optimum configuration. A
useful feature of this method is the ease with
which variable final (or contact) time may be
incorporated as just another parameter even
though considerable additional computation
may be necessary to produce results. These
results suggested that different temperature
profiles determined different contact times. This

550 Qg
500 F 4000 iterations
(43.8% yield)
,o_, 450
g 140 iterations
3 N \ /
' 400 \‘%
g Profile using
g' a 29 gradient
2 ' methods
350t ° o
\ o 280 iterations
‘.\:::6\/&
300 B \\~ -
gOO iterations
(o) 20 40 60 80 {00

Distance along reactor (%)

Fig.7. Progressive changes in profile—discrete temperatures
assumption. Starting profile 400°C isothermal.,

may perhaps be explained by the fact that the
hill-climbing technique is forced to act within
the framework set up by the assumed control
form, and therefore theoretically should give the
best conirol of a type. If the form assumed is
substantially flexible then one evidently has
more opportunity of attaining the best overall
control form—this was shown to be the case in
the resulis obtained here.

V CONCLUSION

In this work, all of the methods used produced
consistent resuits, and each had certain advantages
to offer, but none exhibited overall superiority to the
others on the problem considered.

Taking into account ease of programming,
numerical techniques required, convergence rate and
overall versatility the maximum principle in con-
junction with the method of steepest ascent was
slightly better on average for the problem con-
sidered than any other method. However, it is
obviously unwise to generalise on this conclusion
with respect to other problems.

The characteristics of the numerical example
considered here made it possible, by various means,
to considerably reduce computing times. One likely
generalisation, whatever the characteristics of other
problems, is that computing times can be reduced
by appropriate choice of optimisation and numerical
techniques; the uncertainties involved in these choices
will lessen as computational experience grows.

The possibility of a multi-purpose computer pro-
gram to deal with the problem of system optimisa-
tion has already been explored!” but the writers have
no evidence to hand on the success or otherwise of
this project.

APPENDIX I

Parameterised form of temperature profile

Several assumptions were made concerning the
form of the temperature profile T(7) along the reactor.
To summarise, these were: :

(i) a simple profile in which the temperature varied
linearly from inlet to outlet. In this form the
temperature variation with time ¢ along the
length of the reactor was given by

T=a2—a1t

a; and a, being the two parameters involved.
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(ii) a profile in which the temperature was constant
over a variable region at the inlet followed by
exponential reduction to the outiet. This com-
bination was possible in terms of three para-
meters a;, @, and a, where,

T =ay, t<a,
T= a,e"l(""z), t=a;

Here a, was the variable point of intersection of
the two forms.

(iii) a profile consisting of the combination of three
straight lines, two having variable slope.
Now

T=at, tsaz
T=a; +aas —azt, a; <t<a,
T=a; + aa; + a4(a5 = a3) —agl, t>a,

where a, is the intercept, @, and a, variable
points of intersection, and a, and as the variable
slopes. The number of parameters was now five.

(iv) a form was then considered in which the discrete
temperatures at selected points along the reactor
were themselves chosen to be the parameters
involved, '

ie. T =a (i=12,...,n)

One difficulty here was the compromise neces-
sary between burdening the optimising routine
with too many parameters and having an
inadequate description of the profile with too
few.
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RESUME

Le présent article étudie par voie numérique le
probléme de la recherche du profil optimal de tempéra-
ture dans un réacteur chimique.

Diverses méthodes d’optimisation [méthode du
gradient & pas fixé, méthode de la plus grande pente,
méthode des gradients conjugués) sont comparées
entre-elles et—on -discute_les avantages  relatifs de
plusieurs technigues d'intégration.

Enfin, les auteurs donnent une représentation
paramétrique de la fonction de contréle et résolvent
le probléme par la méthode directe.

ZUSAMMENFASSUNG

In einer Untersuchung mittels eines Elektronen-
rechners wird die Frage nach dem optimalen Tem-
peraturverlauf in einem chemischen Reaktor behandelt.
Es werden die Verfahren mit stufenweisem Gradienten,
steilstem Anstieg und konjugierten Gradienten mitein-
ander verglichen und die Vorteile verschiedener
numerischer Integrationsverfahren erdrtert. Schlieflich
wird die Kontrollfunktion durch eine Anzahl para-
metischer Formen dargestellt und die Frage direkt
durch Bergsteigen angegangen.



